Unclassified

Lawrence Livermore National Laboratory

Bayes-Adaptive Interactive POMDPs

CASIS Workshop 2012

LLNL-PRES-558031

Unclassified

Team

- Brenda Ng, LLNL
 - Machine learning; PI
- Kofi Boakye, LLNL
 - Signal processing; implementation lead
- Carol Meyers, LLNL
 - Applied math; theory lead
- Andrew Wang, MIT
 - Summer student intern; Renaissance man

Talk outline

- Goal
- Motivation
- Example applications
- Assumptions and strategies
- Single-agent decision process (POMDP)
- Interactive decision process (IPOMDP)
- Bayes-adaptive interactive decision process (BA-IPOMDP)
- Concluding remarks

Goal

- Advance modeling and response against humanlike agents who seek to actively "game" against each other over the course of repeated interactions
- Build from current theory in artificial intelligence
 - Sequential decision-making frameworks
- "Bridge the gap" between theory and practice to solve real-world adversarial problems

Motivation

- Humans analyze many factors before acting
 - Current status
 - Opponent behavior
 - Past strategies (opponent and self)

- Drawbacks in traditional game theory (Nash equilibria)
 - No clear way to choose between multiple equilibria
 - Inability to deal with opponents that do not act according to equilibrium strategies

Can we develop computer systems that process decisions more like we do?

Assumptions and strategies

- Uncertainty about the (non-deterministic) environment
- Maintain belief, or probability distribution, over states
- Example: card games

Assumptions and strategies

- Intelligent opponents (who also maintain beliefs about us)
- Account for the opponent's beliefs in nested models; more uncertainty inherent in more deeply nested beliefs

Assumptions and strategies

- Uncertainty about the effects of actions
 - Not entirely certain about how:
 - Environment state changes as a result of actions
 - Observations are related to environment state
- Treat transition model and observation model as part of the uncertain environment state
- Maintain beliefs over model parameters (in addition to the environment states)

To develop our model, we start with the singleagent decision process... the POMDP

- A single-agent decision process at each time step involves:
 - s: state of the environment, unknown to the agent
 - a: action that the agent performs
 - r: reward due to current state and current action
 - z : observation due to current state and previous action

Background: POMDP

• Common framework for planning in single-agent domains $POMDP = \left\langle S, A, T, \Omega, O, R \right\rangle$

- States S
- Actions A
- Transition function $T: S \times A \rightarrow \Delta(S)$
- Observations Ω
- Observation function $O: S \times A \rightarrow \Delta(\Omega)$
- Reward function $R: S \times A \rightarrow \mathbf{R}$

Background: POMDP

Common framework for planning in single-agent domains

Agent's objective: optimize rewards given its beliefs

For adversarial modeling, we need an *interactive* decision process... the IPOMDP

- An interactive decision process involves (at least) two agents; their joint actions affect the next state.
- Each agent has its own interactive states (is), with nested beliefs to predict the opponent's action.

Background: IPOMDP

- Multi-agent extension of POMDP
- Supports decision-making in both cooperative and non-cooperative settings

$$IPOMDP_{i,l} = \langle IS_{i,l}, A, T_i, \Omega_i, O_i, R_i \rangle$$

- Interactive states $IS_{i,l} = S \times M_{j,l-1}$ with $IS_{i,0} = S$
- Joint actions $A = A_i \times A_j$
- Transition function $T_i: S \times A \rightarrow \Delta(S)$
- Observations Ω_i
- Observation function $O_i: S \times A \to \Delta(\Omega_i)$
- Reward function $R_i: IS_i \times A \rightarrow \mathbf{R}$

Background: IPOMDP

Multi-agent extension of POMDP

Supports decision-making in both cooperative and

non-cooperative settings

To increase realism, we came up with an adaptive interactive decision process... the BA-IPOMDP

- A BA-IPOMDP allows
 uncertainty to be associated with
 the transition and observation
 functions via "augmented"
 Bayes-Adaptive interactive
 states (bais).
- A bais contains counts on previous state transitions and observations.
- The counts define the expected probabilities for T and O.

A number of computational challenges exist in solving a BA-IPOMDP

- Nested beliefs can lead to exponential increase in runtime for belief update
- Huge state space due to counts being part of the state
- Reachability trees with large branching factors

Simulation experiments: multi-agent tiger problem

- Two rooms/states: ferocious tiger in one room, jackpot in the other.
 - Tiger position resets when a door is opened.
- Three actions: {open left door, open right door, listen}.
- Six observations: {growl from left side, growl from right side}
 - × {door creak from left side, door creak from right side, silent}.
- Rewards: -100 for opening the tiger's door, +10 for opening the pot of gold's door, -1 for listening.

Results

- Learned values for observation probabilities converge to actual values.
- Learning agent earns more rewards than non-learning agent with incorrect assumptions.

Results

Scenario	Agent 0		Agent 1	
	Self	Opp.	Self	Opp.
1	Learn	Correct	Correct	Correct
2	Learn	Learn	Correct	Correct
3	Learn	Correct	Learn	Correct
4	Learn	Incorrect	Learn	Incorrect
5	Learn	Learn	Learn	Learn

 Learning agents take more conservative actions, thus earn less rewards than nonlearning agents.

Concluding remarks

- The POMDP and its extensions provide a natural way to model sequential decision-making under uncertainty
- Major advances made in applying AI theory to real-world problems (mostly coordination between cooperative agents)
- In theory, proposed framework shows promise for modeling complicated human adversarial systems
- In practice, deployment currently hindered by algorithmic complexity

For technical details and references, please refer to our AAAI paper.

